Automatically Generated Algorithms for the Vertex Coloring Problem

نویسندگان

  • Carlos Contreras Bolton
  • Gustavo Gatica
  • Víctor Parada
چکیده

The vertex coloring problem is a classical problem in combinatorial optimization that consists of assigning a color to each vertex of a graph such that no adjacent vertices share the same color, minimizing the number of colors used. Despite the various practical applications that exist for this problem, its NP-hardness still represents a computational challenge. Some of the best computational results obtained for this problem are consequences of hybridizing the various known heuristics. Automatically revising the space constituted by combining these techniques to find the most adequate combination has received less attention. In this paper, we propose exploring the heuristics space for the vertex coloring problem using evolutionary algorithms. We automatically generate three new algorithms by combining elementary heuristics. To evaluate the new algorithms, a computational experiment was performed that allowed comparing them numerically with existing heuristics. The obtained algorithms present an average 29.97% relative error, while four other heuristics selected from the literature present a 59.73% error, considering 29 of the more difficult instances in the DIMACS benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Just chromatic exellence in fuzzy graphs

A fuzzy graph is a symmetric binary fuzzy relation on a fuzzy subset. The concept of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in 1965cite{zl} and further studiedcite{ka}. It was Rosenfeldcite{ra} who considered fuzzy relations on fuzzy sets and developed the theory of fuzzy graphs in 1975. The concepts of fuzzy trees, blocks, bridges and cut nodes in fuzzy graph has been studi...

متن کامل

New Integer Linear Programming Models for the Vertex Coloring Problem

The vertex coloring problem asks for the minimum number of colors that can be assigned to the vertices of a given graph such that for all vertices v the color of v is different from the color of any of its neighbors. The problem is NP-hard. Here, we introduce new integer linear programming formulations based on partial orderings. They have the advantage that they are as simple to work with as t...

متن کامل

An Experimental Evaluation of List Coloring Algorithms

The list coloring problem is a variant of vertex coloring where a vertex may be colored only a color from a prescribed set. Several applications of vertex coloring are more appropriately modelled as instances of list coloring and thus we argue that it is an important problem to consider. Regardless of the importance of list coloring, few published algorithms exist for it. In this paper we revie...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

A practical algorithm for [r, s, t]-coloring of graph

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013